
INTERFACE

FLORIAN CRAMER

It seems as if the term “interface” is borrowed from chemistry whe-
re it means “a surface forming a common boundary of two bodies,
spaces, phases”.1 In computing, interfaces link software and hardwa-
re in relation to each other and to their human users. So they can
be

(a) hardware that connects users to hardware; typically input/output
devices such as keyboards, and feedback devices such as screens or
loudspeakers

(b) hardware that connects hardware to hardware; network inter-
connection points and bus systems for example.

(c) software, or hardware-embedded logic, that connects hardware
to software; the instruction set of a processor, for example, or device
drivers.

(d) specifications and protocols between software and software; i.e.
“application programming interfaces” (APIs)

(e) symbolic handles which, in conjunction with (a), makes softwa-
re accessible to users; i.e. “user interfaces”, often mistaken in media
studies for “interface” as a whole.

In a software studies context, only the three (c), (d) and (e) are of
relevance.

Regarding (c), any piece of software is an interface to hardware. Com-
puter programs could be seen as tactical constraints of the total pos-
sible uses of hardware. They constrain, for example, the combination
of a CPU, RAM, hard disk, mainboard, video card, mouse, keyboard
and screen with its abundant possible system states to the function of
a word processor, a calculator, a video editor etc.. In other words, they
interface to the universal machine by behaving as a specialized ma-
chine, breaking the former down to a subset of itself. This operation
is linguistic because it reformulates the totality of available machine

1According to Webster’s Ninth Collegiate Dictionary which dates the term to
1882

1



germanINTERFACE 2

instructions into a new control –> language. This language acts as
an “abstraction layer”. It is either a subset of the total available in-
structions when it is Turing incomplete, or a redressing of them with
different symbolic handles when it is Turing complete.

“User interface” and “programming interface” have not always diffe-
red. They used to be identical in many operating systems up to 8-bit
home computers in the 1980s that booted into a BASIC programming
language prompt, or MIT’s Lisp machines which had a Lips program-
ming environment as their user interface. Character-based shells such
as the DOS and Unix shells can be used both as programming and
user interfaces. The same as true even for graphical user interfaces
when they are scriptable. But even if they aren’t, they still act, as a
matter of fact, as specialized symbolic computer control languages.
The distinction of a “user interface”, an “API” and a computer control
language is purely arbitrary. It’s just a nomenclature that more com-
plex interfaces to computer functions tend to be called “programming
languages” and less complex ones “user interfaces”. Since the usage
interface to a computer program is always symbolic, and involves
syntax and symbolic representations for operations, it always boils
down to being a formal language. Everything that can be said about
software interfaces is therefore redundant vis-à-vis the entry on –>
language.


