
$Id: software_decontextualizaton.tex,v 1.3 2002/07/10 16:21:00 paragram Exp $

CONTEXTUALIZING SOFTWARE ART

FLORIAN CRAMER

CONTEXTUALIZATIONS OF ART AND SOFTWARE

Who does (de)contextualize which?I think the title of this panel, “soft-
ware decontextualization”, is very good because it tells a lot about software
art and also about the problems of creating such a term or category. Of
course, “software art” has much to do with contextualization: contextual-
izating (or maybe decontextualizing) art as software and computer software
as art. This contextualization can be observed on two separate levels: In the
work of artists themselves who use software as a material or reference, or
in the work of juries and curators who decide whether a piece of software
is interesting as art or not. In some cases, artists and curators can be one
and the same person; for the Moscow festival “read_me”, the well-known
Net.artist and jury member Alexei Shulgin secretly entered an anonymous
piece of cracker software which visually disturbed the Microsoft Windows
desktop interface into the software art competition. In the end, that entry
actually received an honorary mention of the jury, thus putting up interest-
ing questions of what is included by a category like “software art” and what
is excluded.

I would like to begin, and make these questions less abstract, with
two examples of contemporary digital art, each of them dealing with
software in a very individual way. The first example is Jodi’s work
“Surgery/havoc”http://wwwwwwwww.jodi.org/100cc/havoc/, a part of
jodi’s now-classical Net.art website, the second is “Screen Saver” by El-
dar Karhalev and Ivan Khimin which we gave one of three equal prizes in
Moscow.

Jodi, “Surgery/havoc”. At first glance, Jodi’s piece looks like a mono-
chrome jump’n’run computer game similar to Nintendo’s “Super Mario
Brothers”. There is jump’n’run action on the screen and the possibility
to enter several zoom views or game levels with a few mouseclicks. It is
a work which almost everyone would easily identify as a omputer (respec-
tively: game console) program. The point however is that it’s not. If we
look at the sourcecode of the pages, we see that the piece chiefly consists

Date: July 13rd, 2002.
1

http://wwwwwwwww.jodi.org/100cc/havoc/

CONTEXTUALIZING SOFTWARE ART 2

of simple animated graphics files (demonstration). The HTML sourcecode
of the web page multiplies one minimal GIF animation file over the screen;
the seeming “zoom function” is simply a link to another web page with
enlarged images. If we define as computer software algorithmic programs
written in a Turing-complete programming language like C, Java or Basic,
then Jodi’s “Surgery/havoc” is not software because it doesn’t contain any
algorithms, but only graphical mock-ups of algorithms. — I will explain
better how an algorithm and programming works in a few minutes. — So
its a piece that de- or miscontextualizes it as software. Since it is, as a
trompe l’oeil simulation, with no doubt an aesthetic and cultural reflection
of software. It thus is a very good example why software art, through its
own contextualization, doesn’t necessarily have to be real software.

Eldar Karhalev and Ivan Khimin, “Screen Saver”. (Demonstration.)
While Jodi’s piece seems to be, but is not really software, Eldar Karhalev’s
and Ivan Khimin could be described just the other way around. It is simply
a step-by-step instruction to configure the Windows screensaver in such a
way that it turns into a monolithic display of a giant square that slowly slides
from left to right and black, slightly modulating its color in the process. Of
course, with this piece coming from Russia, one is immediately reminded
of Kasimir Malevich’s “black square”, but it doesn’t intuitively make sense
to call this a piece of software, respectively software art. Like in the jodi
example, no hardcore computer programming was used to create it.

Nevertheless, it could be seen as software in two ways: Firstly, it could be
called post- or meta-software, since manipulates existing software instead
of coding from scratch, managing to turn it upside down even without com-
plex technical skills; it reprograms Windows without using program code.
Secondly, its plain English instruction for misconfiguring the software is a
formal instruction code itself, an algorithm. If we define software as algo-
rithmic code, then this piece surely is software.

WHAT IS SOFTWARE ART, OR: WHAT COULD IT BE?

The question after looking into the software-ness of jodi’s “Havoc” and
Karhalev/Khimin’s “Screen Saver” is of course: Why at all insistent on soft-
ware, and why use the term “software art”? To date, critics and scholars in
the arts and humanities have considered computers primarily as storage and
display media, as something which transmits and reformats images, sound
and typography. But reflection of the as such invisible layer of software
is rare. Likewise, the whole history of the digital and computer-aided arts

CONTEXTUALIZING SOFTWARE ART 3

could be told as a history of ignorance against programming and program-
mers. Computer programs get locked into black boxes, and programmers
are frequently considered to be mere factota, coding slaves who execute
other artist’s concepts. Given that software codeis conceptual writing, this
is not without its own irony. Much of the problem lies, I think, in the prob-
lem that digital art is being called [new] “media art” and thus lumped to-
gether with unrelated technologies such as analog video. If one defines as
a medium something that it is between a sender and a receiver, then com-
puters are not only media, but also senders and receivers which themselves
are capable of writing and reading, interpreting and composing messages
within the limitations of the software rule sets inscribed into them. The
computer programs for example which calculate the credit line of checking
accounts or control medical instruments in an emergency station can’t be
meaningfully called “media”. I personally think that its worth siding with
a term like “software art” even if only for the sake of getting rid of the
meaningless “media” word in arts and criticism.

A Crash Course in Programming. If, as said before, a piece of software
is a set of formal instructions, or, algorithms, then it could also be called a
logical score put down in a code. It doesn’t matter at all which particular
sign system is used as long as it is a code, whether digital zeros and ones, the
Latin alphabet, Morse code or, like in a processor chip, an exactly defined
set of registers controlling discrete currents of electricity.

Thus defined, software instructions don’t necessarily have to run on com-
puters. In 1924, the Dadaist Tristan Tzara’s wrote a generic instruction for
writing Dada poems by shuffling the words of a newspaper article1:

To make a Dadaist poem:
Take a newspaper.
Take a pair of scissors.
Choose an article as long as you are planning to make your
poem. Cut out the article.
Then cut out each of the words that make up this article and
put them in a bag.
Shake it gently.
Then take out the scraps one after the other in the order in
which they left the bag.
Copy conscientiously.
The poem will be like you.
And here you are a writer, infinitely original and endowed

1[Tza75]

CONTEXTUALIZING SOFTWARE ART 4

with a sensibility that is charming though beyond the
understanding of the vulgar.

This poem is effectively an algorithm, a piece of software which may as
well be written as a computer program.2. We could note it more formally
like this:

(1) Count the number of pages of your newspaper.
(2) Choose a random number between 1 and the number of newspaper

pages.
(3) Pick the page that bears the random number you chose.
(4) Count the number of articles on the page you picked.
(5) Choose a random number between 1 and the number of articles on

the page.
(6) Pick the article whose position relative to the others corresponds to

the random number you chose.
(7) Cut out all single words of the article you picked.
(8) Count the number of words you cut out.
(9) Take blank piece of paper.

(10) Repeat the following until no words are left:
(a) Choose a random number between 1 and the number of words

you counted
(b) Pick the word whose position in the article corresponds to the

random number you chose.
(c) Write down the word you picked onto the piece of paper.
(d) Reduce the number of words you counted by one.

(11) The poem is finished.

These English instructions could be transcribed almost line by line into a
computer program. This is what they would look like in the programming
language Perl (which I chose for the sake of simplicity):

This is, if not a complex, yet still a very typical program sourcecode, using
loops and conditional statements. In case you didn’t know about computer
programming yet, you have just made a crash course in it and know all
the basics. Our transcription of Tzara’s poem from English to Perl was
not a transcription of something into software, but a transcription of a non-
machine software into machine software. The instructions only have to

2My own Perl CGI adaption is available underhttp://userpage.
fu-berlin.de/{~}cantsin/permutations/tzara/poeme{\protect\T1\
textunderscore}dadaiste.cgi

http://userpage.fu-berlin.de/{~}cantsin/permutations/tzara/poeme{protect T1	extunderscore }dadaiste.cgi
http://userpage.fu-berlin.de/{~}cantsin/permutations/tzara/poeme{protect T1	extunderscore }dadaiste.cgi
http://userpage.fu-berlin.de/{~}cantsin/permutations/tzara/poeme{protect T1	extunderscore }dadaiste.cgi

CONTEXTUALIZING SOFTWARE ART 5

meet the requirement of being executable by a human being as well as by
a machine. Of course the opposite is also true: A machine is not necessary
to execute even the Perl program; we can execute the code as well in our
minds. Theoretically, this is true for any computer program, and program-
ming handbooks, whose example code is rarely ever run on machines, are a
striking practical example.

So my argument is quite contrary to Friedrich Kittler’s media theory accord-
ing to which there is either no software at all or at least no software without
the hardware it runs on:3 If any algorithm can be executed mentally, as it
was common before computers were invented, then of course software can
exist and run without hardware.

What is interesting about programming? Contrary to conventional data like
digitized images, sound and text documents, algorithmic instruction code
allows a generative process. It uses computers for computation, not only as
storage and transmission media. And this precisely distinguishes program
code from non-algorithmic digital code, describing for example the differ-
ence between algorithmic composition on the one hand and audio CDs/mp3
files on the other, between algorithmically generated text and “hypertext”
(a random access database model which as such doesn’t require algorith-
mic computation at all), or between a graphical computer “demo” and a
video tape. Although one can of course use computers without program-
ming them, it is impossible not to use programs at all. The question only
is who programs. There is, after all, no such thing as data without pro-
grams, and hence no digital arts without the software layers they either take
for granted, or design or manipulate themselves. To discuss “software art”
simply means to not take software for granted, but pay attention to how and
by whom programs were written.

SOFTWARE ART

Executable Code in Art.

Concept Art and Software Art. The question of what software is and how
it relates to non-electronic contemporary art is at least thirty-two years old.
In 1970, the art critic and theorist Jack Burnham curated an exhibition called
"Software" at the Jewish Museum of New York which today is believed to
be first show of concept art. It featured installations of US-American con-
cept artists next installations of computer software Burnham found interest-
ing, such as the first prototype of Ted Nelson’s hypertext system “Xanadu”.
Concept art as an art “of which the material is ‘concepts,’ as the material of

3[Kit91]

CONTEXTUALIZING SOFTWARE ART 6

for ex. music is sound” (Henry Flynt’s definition from 19614) and software
art as an art whose material is formal instruction code seem to have at least
two things in common:

(1) the collapsing of concept notation and execution into one piece;
(2) the use of language; instructions in software art, concepts in con-

cept art. Flynt observes: “Since ‘concepts’ are closely bound up
with language, concept art is a kind of art of which the material is
language”.5

If concepts become, to quote Flynt again, artistic“material”, then concept
art differs from other art in that it actually exposes concepts, putting their
notations up front as the artwork proper. In analogy, software art in partic-
ular differs from software-based art in general in that it exposes its instruc-
tions and codedness.

My favorite example of both concept art in Flynt’s sense and non-computer
software art is La Monte Young’s “Composition 1961”, a piece of paper
containing the written instruction “Draw a straight line and follow it”. The
instruction is unambiguous enough to be executed by a machine. At the
same time, a thorough execution is physically impossible. So the reality of
piece is mental, conceptual.

The same duplicity of concept notation and executable code exists in Sol
LeWitt’s 1971 “Plan for a Concept Art Book”, a series of book pages giv-
ing the reader exact instructions to draw lines on them or strike out specific
letters.6 A writing which writes itself, LeWitt’s “Plan” could also be seen
in a historical continuity of combinatory language speculations: From the
permutational algorithms in the Sefer Jezirah and ecstatic Kabbalah to the
medieval “ars” of Raimundus Lullus to 17th century permutational poetry
and Mallarmé’s “Livre”. The combinatory most complex known permuta-
tion poem, Quirinus Kuhlmann’s 1771 sonnet “Vom Wechsel menschlicher
Sachen” consists of 13∗12 nouns can be arbitrarily shuffled so that they re-
sult in 10114 permutations of the text.7 Kuhlmann’s and La Monte Young’s
software arts meet in their aesthetic extremism; in an afterword, Kuhlmann
claims that there are more permutations of his poem than grains of sand on
the earth.8 If such implications lurk in code, a formal analysis is not enough.
Concept art potentially means terror of the concept, software art terror of the

4[Fly61]
5ibid.
6[Hon71], p. 132-140
7[Kuh71]
8ibid.

CONTEXTUALIZING SOFTWARE ART 7

algorithm; a terror grounded in the simultaneity of minimalist concept nota-
tion and totalitarian execution, helped by the fact that software collapses the
concept notation and execution in the single medium of instruction code. —
Sade’s “120 days of Sodom” could be read as a recursive programming of
excess and its simultaneous reflection in the medium of prose.9 The popu-
larity of spamming and denial-of-service code in the contemporary digital
arts is another practical proof of the perverse double-bind between soft-
ware minimalism and self-inflation; the software art pieces awarded at the
transmediale.02 festival, “tracenoizer” and “forkbomb.pl” also belong to
this category.

If jodi’s art, “Screen Saver”, “tracenoizer” and “forkbomb.pl” have one
thing in common, then it probably is that they take a hacker-approach to
software, in the case of Jodi and Khimin/Karhalev even with the attempt
to hack software itself as a concept. “forkbombs” like the one awarded at
transmediale.02 have been well-known and written in countless implemen-
tations years before by Unix hackers. So is “Software Art” just an arty
repackaging of hacking, perhaps just even a lowbrow version of what is
written with much more technical skill in hacker and free software commu-
nities?

The answer is yes and no. It is indeed a question of contextualization, but
one that contextualization is never “just” contextualization, but what it’s all
about.

Two years before Burnham’s “Software” exhibition, the computer scien-
tist Donald E. Knuth published the first volume of his famous textbook on
computer programming, “The Art of Computer Programming”.10 Knuth’s
wording has adopted in what Steven Levy calls the hacker credo that “you
can create art and beauty with computers”.11 Even if Levy’s account is
idealized, it is telling and — from my point of view — true that hack-
ers, otherwise an avant-garde of a broad cultural understanding of digital
technology, rehash a late-18th century classicist notion of art as beauty
and rewrite it into a concept of digital art as inner beauty and elegance of
code. Such aesthetic conservativism is widespread in engineering and hard-
science cultures; fractal graphics are just one example of Neo-Pythagorean
digital kitsch they promote.

9As Abraham M. Moles noticed already in 1971, [Mol71], p. 124
10knuth:art
11according Steven Levy [Lev84]; among those who explicitly subscribe to this is the

German Chaos Computer Club with its annual “art and beauty workshop”.

CONTEXTUALIZING SOFTWARE ART 8

But as a contemporary art, the aesthetics of software art includes ugliness
and monstrosity just as much as beauty, not to mention plain dysfunction-
ality, pretension and political incorrectness.12 Above all, software art today
no longer writes its programs out of nothing, but works within an abun-
dance of available software code. This makes it distinct from works like
Tzara’s Dada poem which, all the while it addresses an abundance of mass
media information, contaminates only the data, not its algorithm; the words
become a collage, but the process remains a synthetic clean-room construct.
One thus could say that contemporary software art operates in a postmodern
condition in which it takes pre-existing software as material — reflecting,
manipulating and recontextualizing it. This observation applies, by the way,
to all the software art works I mentioned.

Free Software and Software Art. But exactly this observation shows that
the relationship between software art and software non-art is not easily dis-
missed. The first subculture which understood software as something inter-
textual was the Free Software and Open Source movement, i.e. the move-
ment which produced software like GNU and Linux, from which Steven
Levy’s notion of the “hacker” was largely derived. It is true that the no-
tions of craft and art as beauty are generally conservative in Free Software,
hacker and engineering cultures; nevertheless, especially GNU/Linux pro-
vides many examples of software which would be wildly successful as soft-
ware art if it only were properly advertised or, if you prefer, contextualized.

A good reference is the websitehttp://www.sweetcode.org which in-
dexes and links to unusual, original and sometimes mind-challenging soft-
ware, the vast majority of it under free/Open Source licenses. But I
would like to give you a more classical example of a software that is con-
tained in almost all typical GNU/Linux distributions: The software library
“aalib” which transforms computer graphics real-time into typogrammatic
text code. Since many GNU/Linux programs work with this library, you
can view image files, watch TV, watch video files and DVD movies and
even play “Doom” and “Quake” in ASCII; and since it is text code, this
also works over simple Telnet or ssh terminal connections in the Internet.
(Demonstration, bb)

This project is strikingly similar to the well-known Net.art “ASCII Art En-
semble” which produced, among others, an ASCII Art version of the porn
movie “Deep Throat”. In fact, the AAlib software is, in technical terms,

12which is why I think would be wrong to (a) restrict software art to only properly
running code and (b) exclude, for political reasons, proprietary and other questionably
licensed software from software art presentations.

http://www.sweetcode.org

CONTEXTUALIZING SOFTWARE ART 9

vastly superior to anything the ASCII Art Ensemble has made. It was writ-
ten by a group of very young Czech hackers; I have no doubt they would be
“media art” stars today if they had contextualized their work in art channels
by entering it to festivals and competitions.

Conclusion. Software Art abolishes barriers, but creates new ones; con-
textualization = disciplining (in the double sense of the word). Software
programming and digital art: two highly developed net.cultures; conflict
is potentially productive and welcome. Danger: Premature canonization,
sparse input to competitions and festivals, quick hypes.

REFERENCES

[Fly61] Henry Flynt. Concept art. In La Monte Young and Jackson MacLow, editors,An
Anthology. Young and MacLow, New York, 1963 (1961). 6

[Hon71] Klaus Honnef, editor.Concept Art. Phaidon, Köln, 1971). 6
[Kit91] Friedrich Kittler. There is no software, 1991.http://textz.gnutenberg.net/

textz/kittler_friedrich_there_is_no_software.txt. 5
[Kuh71] Quirinus Kuhlmann.Himmlische Libes=küsse. ?, Jena, 1671. 6
[Lev84] Steven Levy.Hackers. Project Gutenberg, Champaign, IL, 1986 (1984). 7
[Mol71] Abraham A. Moles.Kunst und Computer. DuMont, Köln, 1973 (1971). 7
[Tza75] Tristan Tzara. Pour fair une poème dadaïste. InOeuvres complètes. Gallimard,

Paris, 1975. 3

c©This document can be freely copied and used according to the terms of
the Open Publication Licensehttp://www.opencontent.org/openpub

C/O FREIE UNIVERSITÄT BERLIN, SEMINAR FÜR ALLGEMEINE UND VERGLEICHENDE

L ITERATURWISSENSCHAFT, HÜTTENWEG9, D-14195 BERLIN, CANTSIN@ZEDAT.FU-
BERLIN.DE, H T T P:// U S E R P A G E. F U- B E R L I N. D E/~ C A N T S I N

http://textz.gnutenberg.net/textz/kittler_friedrich_there_is_no_software.txt
http://textz.gnutenberg.net/textz/kittler_friedrich_there_is_no_software.txt
http://www.opencontent.org/openpub
http://userpage.fu-berlin.de/~cantsin

	Contextualizations of art and software
	What is Software Art, or: What Could it Be?
	Software Art
	References

